In the last lecture, we were deriving the forces that
lead to verticed acceleration:
DW = \$232 - \$32
Recall that 3B = -\$0\$ <-> \$32
Recall that 3B = -\$0\$ <-> \$32
Recall that 3B = -\$0\$ <-> \$32
Recall that 3B = -\$9\$
Point balance
leving hydrootatic balance, we get the following:
DW = \$109 - \$32
Define budgency B = -9\$
Pi = P-6
DW = B - \$07
B = -9 \$5
B tells you that there's upward acceleration? ?? \$0
d) the density of a parcel in less than the environment
ferv: is the hydrootatic dim. ?
* Let's assume that a winner parcel has the same pressure
as the env. i.e. assume that
$$P = P_0$$
 $P' = S$
We ideal gap law B = \$PRET (ignoring virtual effect)
Rug ideal gap law b B, and effer some work obtain:
B - 9 $F'_0 = -9$ F_0 F_0 F_0
We have:
DW = $S = -7$ for $T = T_0$ for a source that the environment is a source of the environment is the e

In a dry atmosphere, panelo vice at the dry adiabatic

$$T = T_{s} - T_{d} \geq T_{d} = \begin{array}{c} J_{d} \\ J_{d} \end{array}$$
Buck to man and the transmitter in transmitter in the transmitter in transmitter in the transmitter in transmitter in transmitter in the transmitter in transmitter in

Mom. equation becomes:

$$\frac{D^2 z}{Dt^2} = g \left(\frac{T - T_m}{T_{os}} \right) z$$
 when $T > T_m$ the order
 T_{os} is unstable
 $N_m^2 = -g \left(\frac{T - T_m}{T_{os}} \right)$ we want N_m^2 to be negative
to have instability

 \mathcal{O} When TTT the environment colds down faster than the moist adiabatic loper note Dr 70 pa the cloud De 70 keeps growig (حما war (C(