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Announcements

Next Tuesday we will discuss the section titled “The mature hurricane: A 
natural Carnot engine” by Emanuel (1991) (TC_Carnot_Engine.pdf on 
Canvas).  
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https://earth.nullschool.net/#2021/08/25/1600Z/
wind/isobaric/500hPa/

orthographic=-87.74,30.76,1229



4

The first law (internal energy form) 
integrated over this cycle takes the form:

Last Class: Carnot Engine

∮ cvdT = ∮ δq − ∮ δw

Because state variable don’t change during 
a closed loop integral, it follows that

∮ δq = ∮ δw

94 Atmospheric Thermodynamics

Carnot’s cycle consists of taking the working sub-
stance in the cylinder through the following four
operations that together constitute a reversible, cyclic
transformation:

i. The substance starts with temperature T2 at a
condition represented by A on the p–V diagram
in Fig. 3.20. The cylinder is placed on the stand
S and the working substance is compressed by
increasing the downward force applied to the
piston. Because heat can neither enter nor
leave the working substance in the cylinder
when it is on the stand, the working substance
undergoes an adiabatic compression to the
state represented by B in Fig. 3.20 in which its
temperature has risen to T1.

ii. The cylinder is now placed on the warm
reservoir H, from which it extracts a quantity of
heat Q1. During this process the working
substance expands isothermally at temperature
T1 to point C in Fig. 3.20. During this process
the working substance does work by expanding
against the force applied to the piston.

iii. The cylinder is returned to the nonconducting
stand and the working substance undergoes an
adiabatic expansion along book web site in
Fig. 3.20 until its temperature falls to T2.
Again the working substance does work
against the force applied to the piston.

iv. Finally, the cylinder is placed on the cold
reservoir and, by increasing the force applied
to the piston, the working substance is
compressed isothermally along DA back to its
original state A. In this transformation the
working substance gives up a quantity of heat
Q2 to the cold reservoir.

It follows from (3.36) that the net amount of work
done by the working substance during the Carnot
cycle is equal to the area contained within the figure
ABCD in Fig. 3.20. Also, because the working sub-
stance is returned to its original state, the net work
done is equal to Q1 ! Q2 and the efficiency of the
engine is given by (3.78). In this cyclic operation the
engine has done work by transferring a certain quan-
tity of heat from a warmer (H) to a cooler (C) body.
One way of stating the second law of thermodynam-
ics is “only by transferring heat from a warmer to a
colder body can heat be converted into work in a
cyclic process.” In Exercise 3.56 we prove that no
engine can be more efficient than a reversible engine
working between the same limits of temperature, and
that all reversible engines working between the same
temperature limits have the same efficiency. The valid-
ity of these two statements, which are known as
Carnot’s theorems, depends on the truth of the sec-
ond law of thermodynamics.

Exercise 3.15 Show that in a Carnot cycle the
ratio of the heat Q1 absorbed from the warm reser-
voir at temperature T1 K to the heat Q2 rejected
to the cold reservoir at temperature T2 K is equal
to T1!T2.

Solution: To prove this important relationship we
let the substance in the Carnot engine be 1 mol of an
ideal gas and we take it through the Carnot cycle
ABCD shown in Fig. 3.20.

For the adiabatic transformation of the ideal gas
from A to B we have (using the adiabatic equation
that the reader is invited to prove in Exercise 3.33)

where " is the ratio of the specific heat at constant
pressure to the specific heat at constant volume. For
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Fig. 3.19 The components of Carnot’s ideal heat engine.
Red-shaded areas indicate insulating material, and white
areas represent thermally conducting material. The working
substance is indicated by the blue dots inside the cylinder.
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Carnot Engine

Writing these in exact derivative form we 
have

∮ Tds = ∮ pdα ≠ 0

Now let’s consider a cycle divided into 4 
steps:

1. Isothermal compression at a cooler T1

2. Adiabatic compression to T2

3. Isothermal expansion at T2

4. Adiabatic expansion back to T1

3.7 The Second Law of Thermodynamics and Entropy 97

It is interesting to note that if, in a graph (called a
temperature–entropy diagram40), temperature (in kelvin)
is taken as the ordinate and entropy as the abscissa, the
Carnot cycle assumes a rectangular shape, as shown in
Fig. 3.22 where the letters A, B, C, and D correspond to
the state points in the previous discussion. Adiabatic
processes (AB and CD) are represented by vertical
lines (i.e., lines of constant entropy) and isothermal
processes (BC and DA) by horizontal lines. From (3.84)
it is evident that in a cyclic transformation ABCDA, the
heat Q1 taken in reversibly by the working substance
from the warm reservoir is given by the area XBCY,
and the heat Q2 rejected by the working substance to
the cold reservoir is given by the area XADY.
Therefore, the work Q1 ! Q2 done in the cycle is
given by the difference between the two areas, which is
equivalent to the shaded area ABCD in Fig. 3.22.
Any reversible heat engine can be represented by a
closed loop on a temperature–entropy diagram, and the
area of the loop is proportional to the net work done by
or on (depending on whether the loop is traversed
clockwise or counterclockwise, respectively) the engine
in one cycle.

Thermodynamic charts on which equal areas rep-
resent equal net work done by or on the working
substance are particularly useful. The skew T ! ln p
chart has this property.

3.7.3 The Clausius–Clapeyron Equation

We will now utilize the Carnot cycle to derive an
important relationship, known as the Clausius–
Clapeyron42 equation (sometimes referred to by
physicists as the first latent heat equation). The
Clausius–Clapeyron equation describes how the
saturated vapor pressure above a liquid changes
with temperature and also how the melting point of
a solid changes with pressure.

Let the working substance in the cylinder of a
Carnot ideal heat engine be a liquid in equilibrium
with its saturated vapor and let the initial state of the
substance be represented by point A in Fig. 3.23 in
which the saturated vapor pressure is es ! des at tem-
perature T ! dT. The adiabatic compression from
state A to state B, where the saturated vapor pres-
sure is es at temperature T, is achieved by placing the
cylinder on the nonconducting stand and compress-
ing the piston infinitesimally (Fig. 3.24a). Now let the
cylinder be placed on the source of heat at tempera-
ture T and let the substance expand isothermally
until a unit mass of the liquid evaporates (Fig. 3.24b).

40 The temperature–entropy diagram was introduced into meteorology by Shaw.41 Because entropy is sometimes represented by the
symbol " (rather than S), the temperature–entropy diagram is sometimes referred to as a tephigram.

41 Sir (William) Napier Shaw (1854–1945) English meteorologist. Lecturer in Experimental Physics, Cambridge University, 1877–1899.
Director of the British Meteorological Office, 1905–1920. Professor of Meteorology, Imperial College, University of London, 1920–1924.
Shaw did much to establish the scientific basis of meteorology. His interests ranged from the atmospheric general circulation and forecast-
ing to air pollution.

42 Benoit Paul Emile Clapeyron (1799–1864) French engineer and scientist. Carnot’s theory of heat engines was virtually unknown
until Clapeyron expressed it in analytical terms. This brought Carnot’s ideas to the attention of William Thomson (Lord Kelvin) and
Clausius, who utilized them in formulating the second law of thermodynamics.

Fig. 3.22 Representation of the Carnot cycle on a tempera-
ture (T)–entropy (S) diagram. AB and CD are adiabats, and
BC and DA are isotherms.

Fig. 3.23 Representation on (a) a saturated vapor pressure
versus volume diagram and on (b) a saturated vapor pressure
versus temperature diagram of the states of a mixture of a
liquid and its saturated vapor taken through a Carnot cycle.
Because the saturated vapor pressure is constant if tempera-
ture is constant, the isothermal transformations BC and DA
are horizontal lines.
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Carnot Engine

1. Isothermal compression at a cooler T1


2. Adiabatic compression to T2


3. Isothermal expansion at T2


4. Adiabatic expansion back to T1
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Carnot Engine
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Carnot Engine

By expanding the integral into the four 
components of the cycle we find that

W = ∮ pdα = qin − qout = εT1(sin − sout)

ε =
Work done

Heat absorbed
=

T1 − T2

T1

Is the Carnot Efficiency 
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physicists as the first latent heat equation). The
Clausius–Clapeyron equation describes how the
saturated vapor pressure above a liquid changes
with temperature and also how the melting point of
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substance be represented by point A in Fig. 3.23 in
which the saturated vapor pressure is es ! des at tem-
perature T ! dT. The adiabatic compression from
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Carnot Engine

All the processes in the Carnot engine are 
reversible. 


In reality, processes are irreversible, which 
causes additional heat loss.


Thus

ε =
Work done

Heat absorbed
=

T1 − T2

T1

Is the maximum efficiency that is possible 
in a given system. 

ε(Reality) < ε(Carnot)
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We will now begin discussing the last topic of the course:  

buoyancy and convection  



Dw
Dt

=
1
m

ΣiFz

Newton’s second law dictates that 
acceleration must result from a 

net sum of forces. 


Apply this to vertical motion


Vertical Acceleration
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Vertical Acceleration

Ignoring the effects of planetary rotation 
and friction, the two main forces that cause 
vertical acceleration are gravity and the 
pressure gradient force.

Dw
Dt

= − α
∂p
∂z

− g

Acceleration Pressure 
gradient force

Gravity



13

Hydrostatic Balance

For quiescent atmospheric conditions, 
the atmosphere is maintained in place by 
a balance between the downward 
gravitational force and the upward 
pressure gradient force. 

ρg ≃ −
∂p
∂z
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Defining buoyancy 

We want to know how a parcel can 
accelerate upward. If we assume a 
hydrostatic atmosphere as the 
atmosphere’s mean state, then

ρ0g ≡ −
∂p0

∂z
ρ = ρ0 + ρ′ 

p = p0 + p′ 



Defining buoyancy 

Dw
Dt

= −
1
ρ0

∂p′ 

∂z
+ B

Perturbation 
Pressure 

gradient force

Buoyancy

B ≡ − g
ρ − ρ0

ρ0

How can a parcel accelerate upward?

Note: The book uses FB for buoyancy



16

For moist unsaturated air

B ≃ g
Tv − Tv0

Tv0

Can express the buoyancy as the 
difference in virtual temperature between 
the parcel and its surroundings. 


