Ángel F. Adames-Corraliza angel.adamescorraliza@wisc.edu

AOS 630: Introduction to Atmospheric and Oceanic Physics Lecture 17 Fall 2021 Carnot Engine 2, **Buoyancy and convection**

Next Tuesday we will discuss the section titled "The mature hurricane: A natural Carnot engine" by Emanuel (1991) (TC_Carnot_Engine.pdf on Canvas).

https://earth.nullschool.net/#2021/08/25/1600Z/ wind/isobaric/500hPa/ orthographic=-87.74,30.76,1229

Last Class: Carnot Engine

The first law (internal energy form) integrated over this cycle takes the form:

$$\oint c_v dT = \oint \delta q - \oint \delta w$$

Because state variable don't change during a closed loop integral, it follows that

$$\oint \delta q = \oint \delta w$$

Adiabat C D Pressure **T**₂ Isotherm B Isotherm Volume

Adiabat

Writing these in exact derivative form we have

$$\oint T ds = \oint p d\alpha \neq 0$$

Now let's consider a cycle divided into 4 steps:

- Isothermal compression at a cooler T1 1.
- 2. Adiabatic compression to T2
- 3. Isothermal expansion at T2
- 4. Adiabatic expansion back to T1

Carnot Engine

- 1. Isothermal compression at a cooler T1
- 2. Adiabatic compression to T2
- 3. Isothermal expansion at T2
- 4. Adiabatic expansion back to T1

Carnot Engine

By expanding the integral into the four components of the cycle we find that

$$W = \oint p d\alpha = q_{in} - q_{out} = \varepsilon T_1(s_{in} + q_{out})$$

Is the Carnot Efficiency

All the processes in the Carnot engine are reversible.

In reality, processes are irreversible, which causes additional heat loss.

Thus

Is the maximum efficiency that is possible in a given system.

 ε (Reality) < ε (Carnot)

We will now begin discussing the last topic of the course:

buoyancy and convection

Newton's second law dictates that acceleration must result from a net sum of forces.

Apply this to vertical motion

$$\frac{Dw}{Dt} = \frac{1}{m} \sum_{i} F_{z}$$

Ignoring the effects of planetary rotation and friction, the two main forces that cause vertical acceleration are gravity and the pressure gradient force.

For quiescent atmospheric conditions, the atmosphere is maintained in place by a balance between the **downward** gravitational force and the upward pressure gradient force.

$$\rho g \simeq -\frac{\partial p}{\partial z}$$

<u>Hydrostatic Equilibrium</u>

© 2007 Thomson Higher Education

We want to know how a parcel can accelerate upward. If we assume a hydrostatic atmosphere as the atmosphere's mean state, then

<u>Hydrostatic Equilibrium</u>

© 2007 Thomson Higher Education

Defining buoyancy

How can a parcel accelerate upward?

Note: The book uses F_B for buoyancy

Can express the buoyancy as the difference in virtual temperature between the parcel and its surroundings.

$$B \simeq g \frac{T_v - T_{v0}}{T_{v0}}$$

