AOS 630: Introduction to Atmospheric and Oceanic Physics Lecture 16 Fall 2021 Ice processes, Carnot Engine

Ángel F. Adames-Corraliza angel.adamescorraliza@wisc.edu

WISCONSIN

Skew-T a week is due today. Please submit by the end of the day.

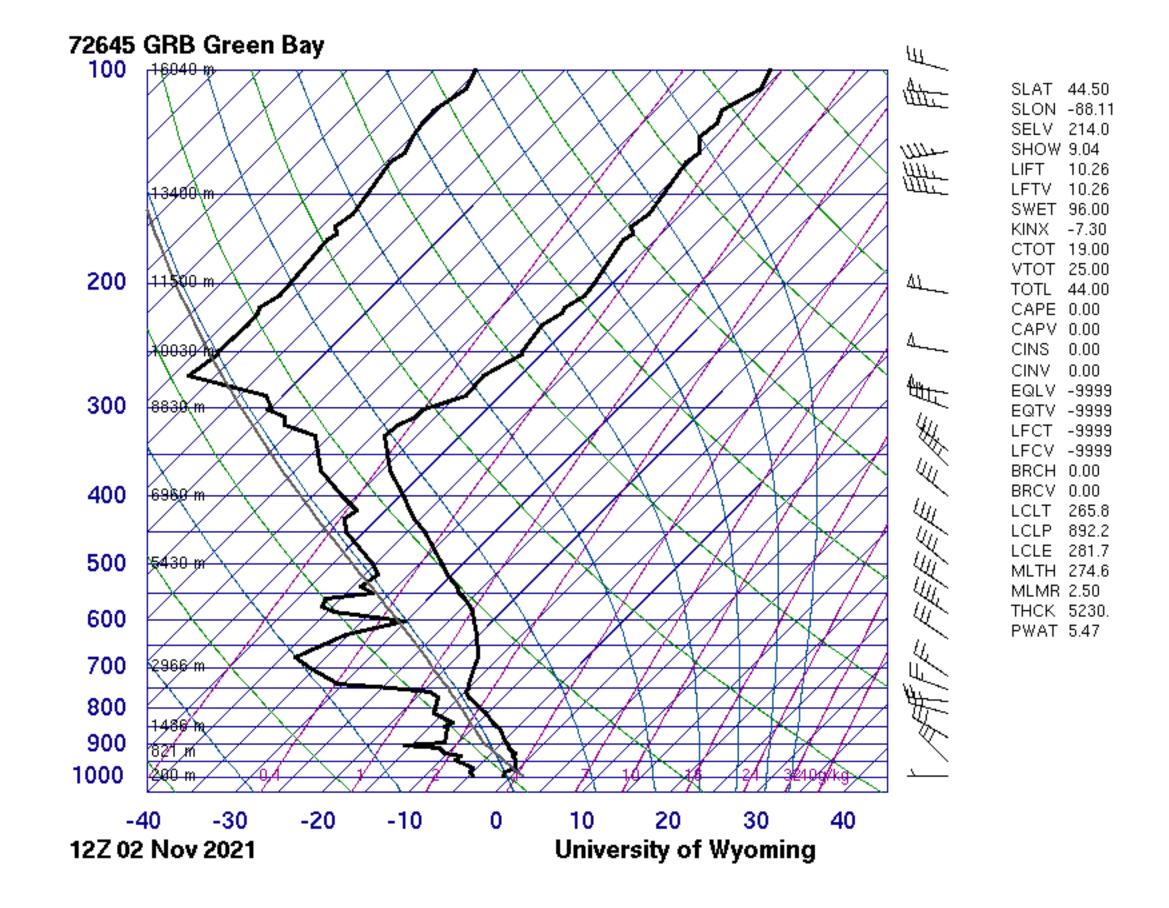
Next Tuesday we will discuss the section titled "**The mature hurricane: A natural Carnot engine**" by Emanuel (1991) (TC_Carnot_Engine.pdf on Canvas).

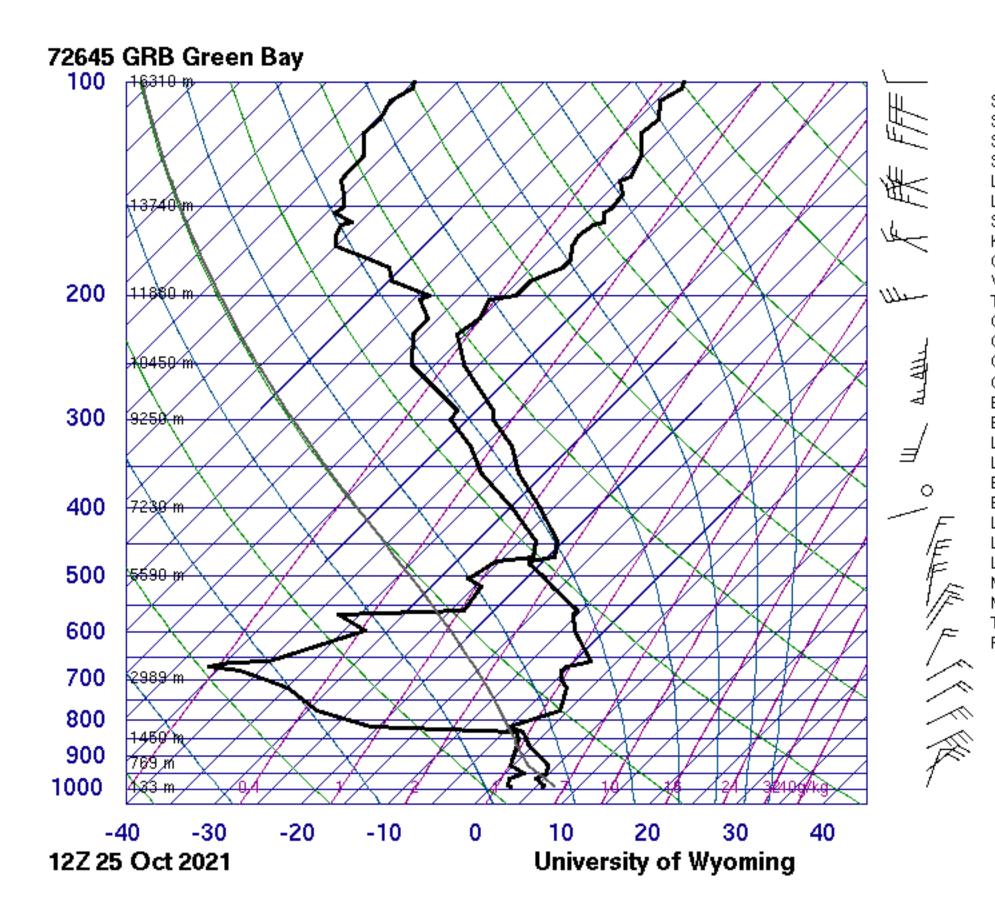
Please come prepared.

Please meet with me after class (office hours) if you have anything you want to discuss about the final.

Daily dose of thermo

Today's Green Bay sounding vs October 25. What do you see?





SLAT 44.50 SLON -88.11 SELV 214.0 SHOW 13.87 LIFT 15.29 LFTV 15.36 SWET 93.01 KINX -19.6 CTOT 15.90 VTOT 16.80 TOTL 32.70 CAPE 0.00 CAPV 0.00 CINS 0.00 CINV -60.4 EQLV -9999 EQTV 813.9 LFCT -9999 LFCV 816.8 BRCH 0.00 BRCV 0.00 LCLT 273.8 LCLP 913.1 LCLE 293.5 MLTH 281.0 MLMR 4.43 THCK 5457. PWAT 10.26

Last class

$$c_p \frac{DT}{Dt} - \alpha \frac{Dp}{Dt} =$$

$$\dot{Q}_e = -L_f(m - f + s - d) + \dot{Q}_r + \mathcal{F}_h + \mathcal{F}_q$$

We can get a simpler conserved variable is we assume hydrostatic balance:

$$\frac{Dp}{Dt} \simeq \frac{dp}{dz} \frac{Dz}{Dt} = -\rho g \frac{Dz}{Dt} = -\rho \frac{D\Phi}{Dt}$$

Which we can plug into the first equation above to obtain

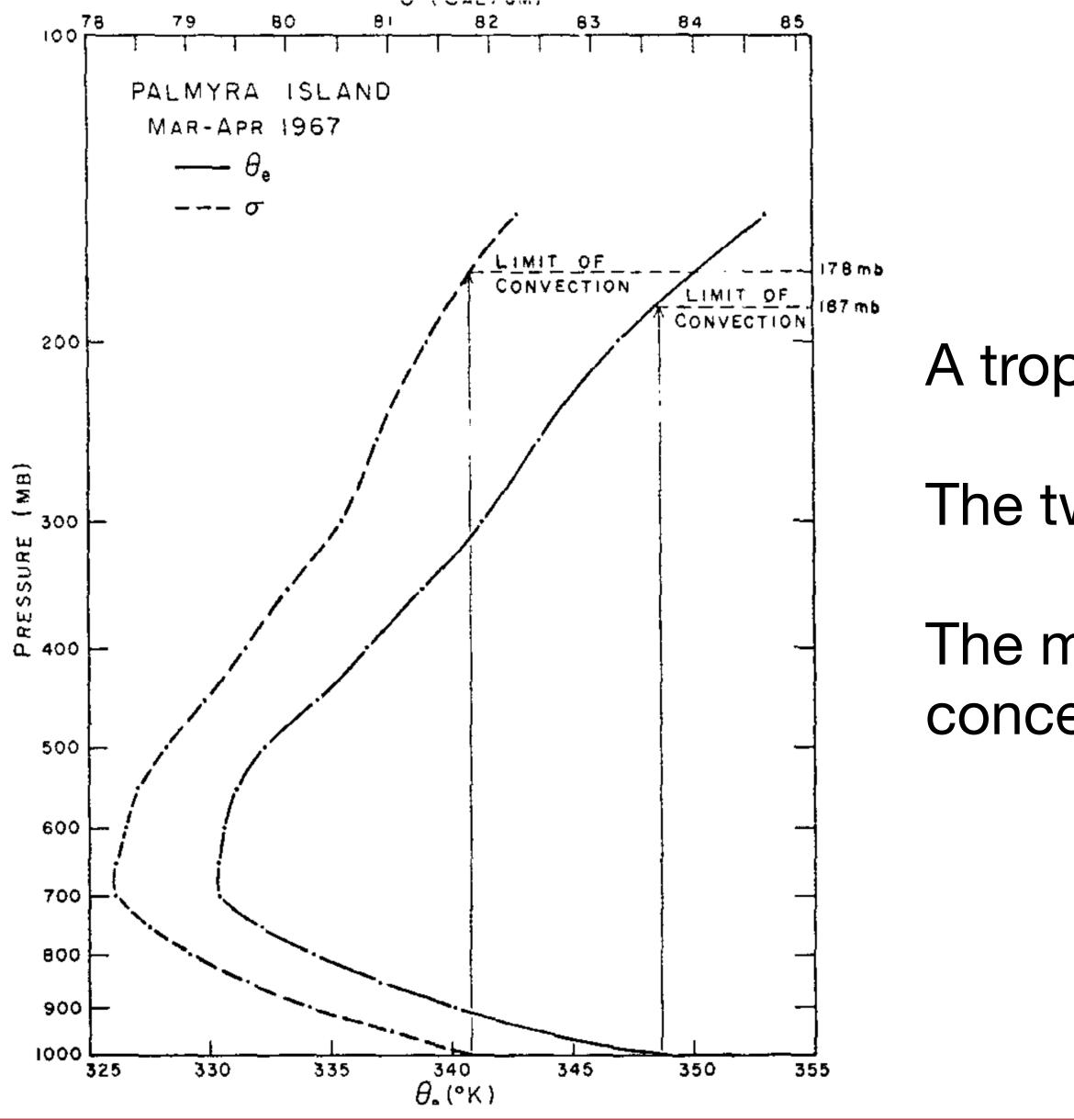
$$\frac{Dm}{Dt} = \dot{Q}_e \quad \text{Where}$$

$$-L_v \frac{Dq_v}{Dt} + \dot{Q}_e$$

$$m = c_p T + \Phi + L_v q_v$$

The moist static energy

MSE vs theta-e

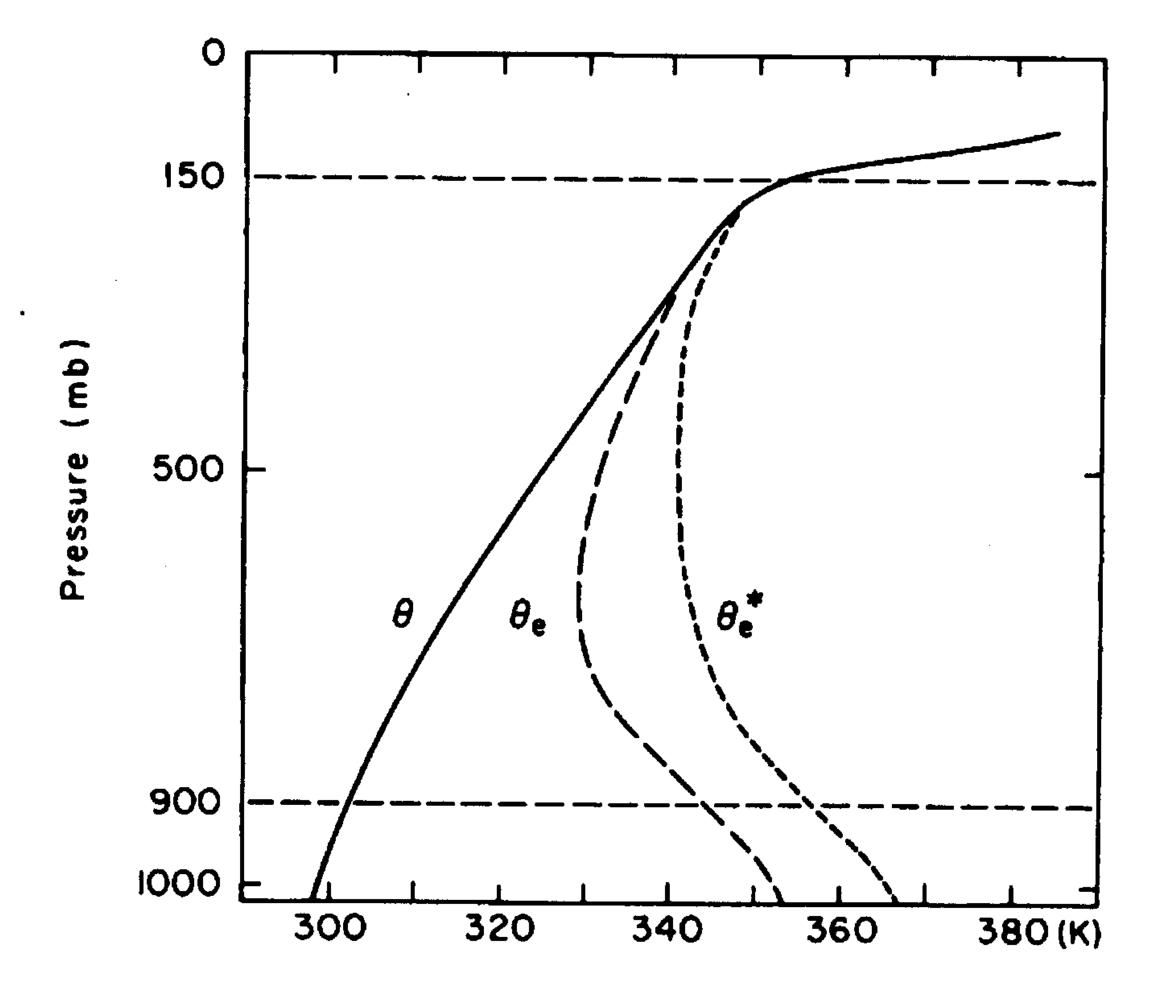


A tropical sounding is shown on the left

The two variables look very similar

The maximum near the surface is due to the large concentration of water vapor.

Profile of theta-e



Water vapor changes the profile of theta-e

 $\theta_e \simeq \theta \exp\left(\frac{L_v q_v}{c_p T}\right)$

The moist adiabatic lapse rate

A parcel that rises moist adiabatically conserved its MSE as it rises

By expanding the definition and after some algebra and rearranging

$$\frac{dT}{dz} = -\Gamma_m$$

Is the moist adiabatic lapse rate.

 $\frac{Dm}{Dz} = 0$

$$\Gamma_m = \Gamma_d \frac{1 + \frac{L_v q_s}{R_d T}}{1 + \frac{L_v^2 q_s}{c_p R_v T^2}}$$

Briefly discuss ice processes Introduce the Carnot Engine

Today

Moist static energy

Let's return to the MSE budget (we can later generalize)

$$\frac{Dm}{Dt} = \dot{Q}_e \qquad \qquad \dot{Q}_e = -L_f(m - f + s - d) + \dot{Q}_r + \mathcal{F}_h + \mathcal{F}_q$$

- There are still processes that are inherent to phase changes within. Parcel
- Can we define a quantity that is conserved even for ice processes?

Invoke water continuity

The total water content is

$$q_T = q_v + q_l + q_i$$

- q_T Specific total water mass content
- q_v Specific humidity
- q_l Specific liquid water content
- q_i Specific ice content

$$\frac{Dq_t}{Dt} = \frac{Dq_v}{Dt} + \frac{Dq_l}{Dt} + \frac{Dq_i}{Dt} = 0$$
$$\frac{Dq_v}{Dt} = e - c + s - d$$
$$\frac{Dq_l}{Dt} = c - e + m - f$$
$$\frac{Dq_i}{Dt} = f - m + d - s$$

Invoke water continuity

 $\frac{Dm}{Dt} = \dot{Q}_e$ $\dot{Q}_e = -L_f($ $\frac{Dq_t}{Dt} = \frac{Dq_v}{Dt} + \frac{Dq_l}{Dt} + \frac{Dq_l}{Dt} = 0$

The remaining terms are those that define the ice continuity equation.

$$(m - f + s - d) + \dot{Q}_r + \mathcal{F}_h + \mathcal{F}_q$$
$$\frac{Dq_v}{Dt} = e - c + s - d$$
$$\frac{Dq_l}{Dt} = c - e + m - f$$
$$\frac{Dq_i}{Dt} = f - m + d - s$$

Frozen Moist Static Energy

$$\frac{Dm_f}{Dt} = \dot{Q}_r + \mathcal{F}_h + \mathcal{F}_q$$

It is conserved for all transformations of water. You can obtain a frozen potential temperature and a frozen moist entropy in a similar way.

You will see this quantity frequently used in studies of tropical deep convection.

The MSE and ice content budget can be combined to obtain the frozen MSE budget

$$m_f = c_p T + \Phi + L_v q_v - L_f q_i$$

The importance of ice in deep clouds is a recent realization (last 20 years).

Heat engines: The Carnot Cycle

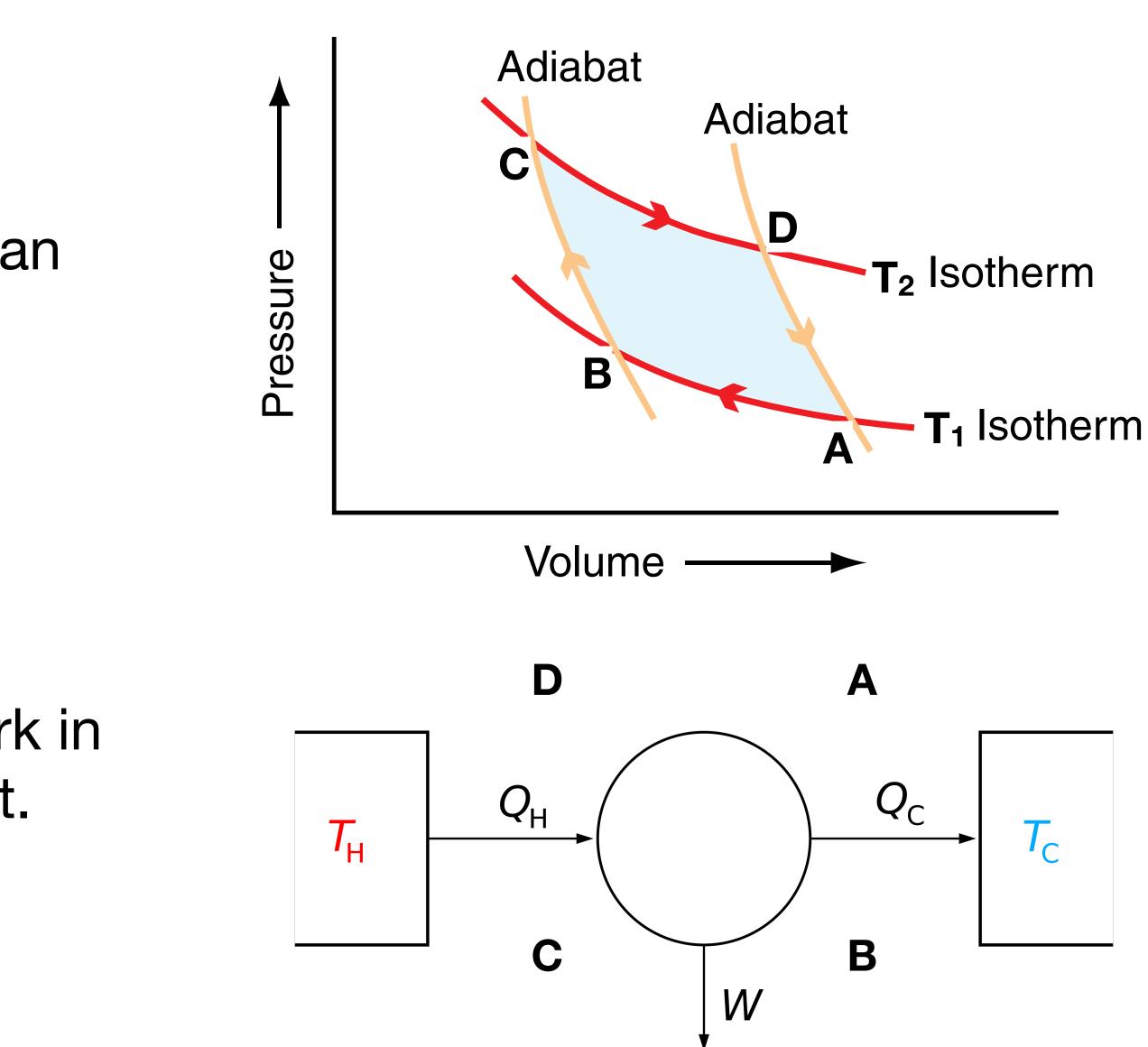
Supplen Petty Se Wallace and

- Supplemental reading
- Petty Section Sec 5.5
- Wallace and Hobbs Sec 3.7

Consider a cyclical process involving an ideal gas.

The cycle goes through four steps, as outlined in the diagram on the right.

Essentially, you input heat at a high temperature and the system does work in proportion to the amount of input heat.



The first law (internal energy form) integrated over this cycle takes the form:

$$\oint c_v dT = \oint \delta q - \oint \delta w$$

Because state variable don't change during a closed loop integral, it follows that

$$\oint \delta q = \oint \delta w$$

Adiabat C D Pressure T₂ Isotherm Β Isotherm Volume

Adiabat

Because the variables in the integral are process variables, it follows that

$$\oint \delta q = \oint \delta w \neq 0$$

The cycle can do work in proportion to the amount of heat input.

In HW4 you get to think about the above premise but for a hurricane. What is the heat input and what is the work in that case?

