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Announcements

Skew-T a week is due today. Please submit by the end of the day.  

Next Tuesday we will discuss the section titled “The mature hurricane: A 
natural Carnot engine” by Emanuel (1991) (TC_Carnot_Engine.pdf on 
Canvas).  

Please come prepared. 

Please meet with me after class (office hours) if you have anything you want to 
discuss about the final.
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Daily dose of thermo

Today’s Green Bay sounding vs October 25. What do you see?
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Last class

We can get a simpler conserved variable is we assume hydrostatic balance:

cp
DT
Dt

− α
Dp
Dt

= − Lv
Dqv

Dt
+ ·Qe

Which we can plug into the first equation above to obtain 

Dm
Dt

= ·Qe
The moist static energy

Where

Dp
Dt

≃
dp
dz

Dz
Dt

= − ρg
Dz
Dt

= − ρ
DΦ
Dt

m = cpT + Φ + Lvqv

·Qe = − Lf(m − f + s − d) + ·Qr + ℱh + ℱq
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MSE vs theta-e

A tropical sounding is shown on the left


The two variables look very similar


The maximum near the surface is due to the large 
concentration of water vapor. 
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Profile of theta-e

Water vapor changes the profile of theta-e

θe ≃ θ exp ( Lvqv

cpT )
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The moist adiabatic lapse rate

A parcel that rises moist adiabatically conserved its MSE as it rises

Dm
Dz

= 0

By expanding the definition and after some algebra and rearranging

Is the moist adiabatic lapse rate.

dT
dz

= − Γm Γm = Γd

1 +
Lvqs

RdT

1 + L2
v qs

cpRvT2
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Today

Briefly discuss ice processes

Introduce the Carnot Engine
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There are still processes that are inherent to phase changes within. 
Parcel


Can we define a quantity that is conserved even for ice processes?

Dm
Dt

= ·Qe
·Qe = − Lf(m − f + s − d) + ·Qr + ℱh + ℱq

Moist static energy

Let’s return to the MSE budget (we can later generalize)
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Dqv

Dt
= e − c + s − d

Dql

Dt
= c − e + m − f

Dqi

Dt
= f − m + d − s

Dqt

Dt
=

Dqv

Dt
+

Dql

Dt
+

Dqi

Dt
= 0

Invoke water continuity

qT = qv + ql + qi

The total water content is

qT

qv

ql

qi

Specific total water mass content

Specific humidity

Specific liquid water content

Specific ice content
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Invoke water continuity

Dqv

Dt
= e − c + s − d

Dql

Dt
= c − e + m − f

Dqi

Dt
= f − m + d − s

Dqt

Dt
=

Dqv

Dt
+

Dql

Dt
+

Dqi

Dt
= 0

Dm
Dt

= ·Qe
·Qe = − Lf(m − f + s − d) + ·Qr + ℱh + ℱq

The remaining terms are those that 
define the ice continuity equation.
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Frozen Moist Static Energy

Dmf

Dt
= ·Qr + ℱh + ℱq

The MSE and ice content budget can be combined to obtain the frozen MSE budget

mf = cpT + Φ + Lvqv − Lfqi

It is conserved for all transformations of water.  You can obtain a frozen 
potential temperature and a frozen moist entropy in a similar way.


You will see this quantity frequently used in studies of tropical deep 
convection. 


The importance of ice in deep clouds is a recent realization (last 20 years). 
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Heat engines: 
The Carnot Cycle

Supplemental reading

Petty Section Sec 5.5


Wallace and Hobbs Sec 3.7
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Consider a cyclical process involving an 
ideal gas.


The cycle goes through four steps, as 
outlined in the diagram on the right. 


Essentially, you input heat at a high 
temperature and the system does work in 
proportion to the amount of input heat. 

Carnot Engine

94 Atmospheric Thermodynamics

Carnot’s cycle consists of taking the working sub-
stance in the cylinder through the following four
operations that together constitute a reversible, cyclic
transformation:

i. The substance starts with temperature T2 at a
condition represented by A on the p–V diagram
in Fig. 3.20. The cylinder is placed on the stand
S and the working substance is compressed by
increasing the downward force applied to the
piston. Because heat can neither enter nor
leave the working substance in the cylinder
when it is on the stand, the working substance
undergoes an adiabatic compression to the
state represented by B in Fig. 3.20 in which its
temperature has risen to T1.

ii. The cylinder is now placed on the warm
reservoir H, from which it extracts a quantity of
heat Q1. During this process the working
substance expands isothermally at temperature
T1 to point C in Fig. 3.20. During this process
the working substance does work by expanding
against the force applied to the piston.

iii. The cylinder is returned to the nonconducting
stand and the working substance undergoes an
adiabatic expansion along book web site in
Fig. 3.20 until its temperature falls to T2.
Again the working substance does work
against the force applied to the piston.

iv. Finally, the cylinder is placed on the cold
reservoir and, by increasing the force applied
to the piston, the working substance is
compressed isothermally along DA back to its
original state A. In this transformation the
working substance gives up a quantity of heat
Q2 to the cold reservoir.

It follows from (3.36) that the net amount of work
done by the working substance during the Carnot
cycle is equal to the area contained within the figure
ABCD in Fig. 3.20. Also, because the working sub-
stance is returned to its original state, the net work
done is equal to Q1 ! Q2 and the efficiency of the
engine is given by (3.78). In this cyclic operation the
engine has done work by transferring a certain quan-
tity of heat from a warmer (H) to a cooler (C) body.
One way of stating the second law of thermodynam-
ics is “only by transferring heat from a warmer to a
colder body can heat be converted into work in a
cyclic process.” In Exercise 3.56 we prove that no
engine can be more efficient than a reversible engine
working between the same limits of temperature, and
that all reversible engines working between the same
temperature limits have the same efficiency. The valid-
ity of these two statements, which are known as
Carnot’s theorems, depends on the truth of the sec-
ond law of thermodynamics.

Exercise 3.15 Show that in a Carnot cycle the
ratio of the heat Q1 absorbed from the warm reser-
voir at temperature T1 K to the heat Q2 rejected
to the cold reservoir at temperature T2 K is equal
to T1!T2.

Solution: To prove this important relationship we
let the substance in the Carnot engine be 1 mol of an
ideal gas and we take it through the Carnot cycle
ABCD shown in Fig. 3.20.

For the adiabatic transformation of the ideal gas
from A to B we have (using the adiabatic equation
that the reader is invited to prove in Exercise 3.33)

where " is the ratio of the specific heat at constant
pressure to the specific heat at constant volume. For
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Fig. 3.19 The components of Carnot’s ideal heat engine.
Red-shaded areas indicate insulating material, and white
areas represent thermally conducting material. The working
substance is indicated by the blue dots inside the cylinder.
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The first law (internal energy form) 
integrated over this cycle takes the form:

Carnot Engine

∮ cvdT = ∮ δq − ∮ δw

Because state variable don’t change during 
a closed loop integral, it follows that

∮ δq = ∮ δw

94 Atmospheric Thermodynamics
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Because the variables in the integral are 
process variables, it follows that

Carnot Engine

The cycle can do work in proportion to the 
amount of heat input. 


In HW4 you get to think about the above 
premise but for a hurricane. What is the 
heat input and what is the work in that 
case?

∮ δq = ∮ δw ≠ 0

94 Atmospheric Thermodynamics
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