The use of ice in advaced powerses
Selo bost by considering the MSE budget:

$$Int = ise m=MSE = QT + I + Lv get
Qe = Le(F-m+d-s) + Qr + Jg + Jh
What happens when we consider these
rice processes"
We can define a variable like MSE that is also conserved
for "ice processes"
Define the operific ico content as $g_i = Mi$
Main
the ice budget: $D_{i}^{2} = Si = f - m + d - S$
We can now expand the MSE budget:
 $Dr = Ls D_{i}^{2} + Qr + Jg + Jh$
We can define a new variable: the frozen motof static energy
 $Mr = TMSE = m - Ls g_i$ conserved under ice processes
 $= cpT + I + Wy - Zs g_i$
It follows that $Lv + 7 L + 2i$ index most conditions
Newser, $Ls g_i$ is not negligible
 $Lv = 3$ the energy that you lose if you melt your
 $Ls g_i = 5$ the energy that you lose if you melt your
 $ice content$$$

Because we are doing a cycle, CrT does not change. It follows that: \$59 = \$SW heat input = work dore T Remember that $ds = \frac{S_2}{T} \longrightarrow Tds = S_2$ \$TdS = \$Sw heat input = work dore We can divide our cycle into four parts: i) Isothermal compression at a cooler TI 2) Adiabatic compression from T1 to T2 3) Isothermal expansion at a warmer T2 u) adiabatic expansion back to T. T (2) enhopy S of Tds = of pdd we can break the integral into ito four oteps $= \int_{a}^{b} T ds + \int_{a}^{c} T ds + \int_{a}^{d} T ds + \int_{a}^{d} T ds$ Step (i) $\int_{a}^{b} T ds = T_{i} \int_{a}^{b} ds = T_{i} (S_{b} - S_{a}) = T_{i} \Delta S$ Step (2) $\int_{b}^{c} T ds = D$ Step (3) $\int_{c}^{d} T ds = T_{2} \int_{c}^{d} ds = T_{2} (s_{d} - s_{c})$ Step (4) $\int_{d}^{a} T ds = D$