Ángel F. Adames-Corraliza angel.adamescorraliza@wisc.edu

CIMSS

AOS 630: Introduction to Atmospheric and Oceanic Physics Lecture 11 Fall 2021 The Clausius-Clapeyron Equation 2

Announcements

HW2 is due. Please upload to Canvas by the end of day. Let me know if you need an extension.

HW3 is online. It's a doozy. Start working on it early.

Announcements

Please come ready for a discussion again. It will complement HW3. See Canvas file "Held&Soden2006.pdf"

Next week we will discuss Held and Soden (2006): Robust Responses of the Hydrological Cycle to Global Warming.

3

Supplementary reading

Petty Sections 7.3-7.5 Wallace and Hobbs 3.5.1

4

First law of thermodynamics: Gibbs form

$$G = h - sT$$

Gibbs version of the first law

$dG = \alpha dp - s dT$

The Gibbs free energy.

Maximum work that can be done by a system at constant temperature and pressure

What advantages might this equation have over other forms of the first law?

We are specifically interested in isobaric, isothermal processes

dG = 0

Let's think of a system in which contains liquid water and water vapor, and is whose temperature and pressure remain constant.

Gibbs free energy

but one rate may exceed the other initially.

Eventually the liquid and the gas reach thermodynamic equilibrium.

(a) Unsaturated

- Imagine you have a tank that is completely closed. The tank has liquid water, dry air and water vapor. Evaporation and condensation happen simultaneously in it,

(b) Saturated

In this state of equilibrium, the tank satisfies

$$\frac{DG}{Dt} = 0$$

Which means that the change in G for evaporation and condensation must be equal

$$G_v = G_l$$

The vapor pressure for equilibrium is known as the saturation vapor pressure e_s

(b) Saturated

RH

If the RH is 100%, you have reached equilibrium. That is, the rate of evaporation to condensation is the same*

(*This only applies for flat surfaces of water. The story is different for cloud droplets)

The vapor pressure for equilibrium is known as the saturation vapor pressure e_s

(b) Saturated

This means that if the tank is warmed for example, G in both systems must change equally when equilibrium is reached again.

$$dG_v = dG_l$$

Solving this equality and taking the limit yields the Clapeyron equation

$$\frac{de_s}{dT} = \frac{s_v - s_l}{\alpha_v - \alpha_l}$$

Latent energy of vaporization

Written in terms of entropy $L_v = T(s_v)$

Physically-speaking, L_v describes the increase in enthalpy that the system obtains from the breakage of the molecular bonds in liquid.

If thought as a potential energy (PE), then you can think of the following conservation

 $(PE+h)_l = (PE+h)_v$

$$v - s_l$$

The Clausius-Clapeyron equation: solution

Plugging the definition of L_v into the Clapeyron equation yields the Clausius-Clapeyron Equation.

Assuming that

 $\alpha_v \gg \alpha_l$

Yields a solution of the form

 L_{v} $e_s \simeq e_{s0} \exp\left[\frac{\dot{r}}{R_v} \left[\frac{T_0}{T_0} - \frac{T}{T}\right]\right]$

The Clausius-Clapeyron equation: solution

A simplified version of the solution takes the following form

$$e_s = A \exp\left(-\frac{B}{T}\right)$$

 $A = 2.53 \times 10^9 hPa$

$B = L_v / R_v = 5.42 \times 10^3 K$

This is a nice version that you can use to obtain other variables that are related to the Clausius-Clapeyron equation.

Wallace and Hobbs (2006)

Dew Point

$$e(T_d) = e_s$$

Can use Clausius-Clapeyron to obtain it

$$T_d(p, q_v) = \frac{B}{\ln\left(\frac{A\varepsilon}{pq_v}\right)}$$

$$A = 2.53 \times 10^9 hPa$$

 $B = L_v/R_v = 5.42 \times 10^3 K$

Is the temperature in which an unsaturated air parcel will reach saturation if we adiabatically cool it and keep the mixing ratio and the pressure constant.

Saturation mixing ration and specific humidity

We can obtain saturation values of the mixing ratio and specific humidity

$$r_s = \varepsilon \frac{e_s}{p_d}$$

$$\varepsilon = R_d/R_v = 0.622$$

Same as the quantities defined previously, but for saturation vapor pressure

$$q_s \simeq \varepsilon \frac{e_s}{p}$$

Importance of Clausius-Clapeyron (CC)

To a good approximation, saturation humidity scales with CC

Total Precipitable Water 2021-10-14 1000 UTC

Dew Point depression

$$\Delta T_d = T - T_d$$

Separation between temperature and dew point

See now why the spacing for mixing ratio is not linear?

200

500

mb

We are actually looking at the saturation mixing ratio.

RH vs dew point

The RH tells you how close you are to being saturated

$RH = \frac{q_v}{q_s}$

Dew point tells you the absolute value of moisture content.

They are different, but useful

GFS MSLP (mb), 700-400 hPa Relative Humidity (%), and 700-400 hPa Wind (kt)

Init: 12z Oct 14 2021 Forecast Hour: [6] valid at 18z Thu, Oct 14 2021

