# AOS 630: Introduction to Atmospheric and Oceanic Physics Lecture 6 Fall 2021 The First Law of Thermodynamics 2 

Ángel F. Adames-Corraliza angel.adamescorraliza@wisc.edu

## Announcements

Please make sure to upload your first Skew-T a week to Canvas.

HW1 is due this Thursday! HW2 will be uploaded that same day.

Substituting $d e$ with $c_{v} d T$ we get the following

$$
c_{\nu} d T=\delta q-p d \alpha
$$

Where the variables are defined as

$$
\begin{aligned}
d e & =d E / M \\
\delta q & =\delta Q / M
\end{aligned}
$$



Describes the notion of conservation of energy.
Also describes the time rate of change of the thermodynamic state
In time-derivative form, we can write as:


$$
\dot{Q} \equiv \frac{\delta q}{\delta t}
$$

## Alternate form for ideal gases

We can use the ideal gas law to write the first law as

$$
c_{p} \frac{d T}{d t}=\dot{Q}+\alpha \frac{d p}{d t}
$$

$c_{p}=c_{v}+R_{d} \quad$ is the specific heat at constant pressure.

We are ignoring the virtual temperature effect.

## Today

Continue our discussion of the first law

## Types of thermodynamic processes

Isobaric: pressure does not change
Isothermal: temperature does not change
Isochoric: volume does not change
Adiabatic: no heat exchange

## Adiabatic processes

When there is no diabatic heating ( $q=0$ ), the system is adiabatic

$$
c_{p} \frac{d T}{d t}=\alpha \frac{d p}{d t} \quad c_{v} \frac{d T}{d t}=-p \frac{d \alpha}{d t}
$$

Can use ideal gas law to obtain the following equation

$$
c_{p} \frac{d \ln T}{d t}=R_{d} \frac{d \ln p}{d t}
$$

$c_{p} \frac{d \ln T}{d t}=R_{d} \frac{d \ln p}{d t}$

## Adiabatic processes

$$
c_{p} \frac{d \ln T}{d t}=R_{d} \frac{d \ln p}{d t}
$$

For an ideal gas, an increase in pressure increases its temperature. An increase in volume decreases it's temperature


## Adiabatic processes

$$
c_{p} \frac{d \ln T}{d t}=R_{d} \frac{d \ln p}{d t}
$$

In the atmosphere, lifting causes parcels to expand and hence cool.

This is because we are moving towards a region of lower pressure, which causes our parcel to expand outward.

The parcel wants to be in the same pressure as its surrounding air.

## Adiabatic processes

$$
c_{p} d \ln T=R_{d} d \ln p
$$

Can solve this equation by integrating

$$
T_{0}=T\left(\frac{p_{0}}{p}\right)^{R_{d} / c_{p}}
$$

When $\mathrm{p} 0=1000 \mathrm{hPa}$

$$
T_{0}=\theta
$$

We refer to as the potential temperature

## Adiabatic processes

$$
\theta=T\left(\frac{p_{0}}{p}\right)^{R_{d} / c_{p}}
$$

The temperature a parcel would have if its adiabatically brought back to the surface.
 <br> \section*{\section*{Potential Temperature}} <br> \section*{\section*{Potential Temperature}}

Zonal mean potential temperature


都

．

．

75






都



a

## Dry static energy

A similar quantity to potential temperature is the dry static energy

$$
s_{s}=c_{p} T+\Phi
$$

The temperature a parcel would have if its adiabatically brought back to the surface.

The process needs to also be hydrostatic (vertical acceleration is small)


## Dry adiabatic lapse rate

If a parcel is displaced vertically dry adiabatically, it would cool following the dry adiabatic lapse rate

$$
\begin{gathered}
\Gamma_{d}=\frac{g}{c_{p}} \\
\Gamma_{d}=9.8 \mathbf{K ~ k m}^{-1}
\end{gathered}
$$



## Dry adiabatic lapse rate on a Skew-T

Green line in this diagram


Solid red line in this diagram


## Skew-T a week \#2



Download a Skew-T from your preferred website.

Pick a parcel at 600 hPa and bring it down adiabatically to the surface.

What will its temperature be and how does that compare to the surface temperature of the sounding?

Discuss your finding.

