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Announcements

Homework 1 is now online. It is due 
two weeks from today.
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Last Class: the equation of state

For dry air 
pd = ρdRdT

Partial pressure for water vapor

e = ρvRvT

Rd = 287J kg−1K−1

Dry gas constant

Rv = 461J kg−1K−1

Water vapor constant

Partial pressure for moist air

p = pd + e p = (ρdRd + ρvRv)T
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Equation of state for seawater 

ρ = ρ0 [1 − βT (T − T0) + βs (S − S0) + βp (p − p0)]

This is just an approximation. 
The equation that is used in 

ocean modeling is much more 
complicated!
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Today

Examine how water vapor modifies 
the equation of state


Introduce the hydrostatic equation
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Supplementary reading

Petty 

Sections 3.4 and Chapter 4


Wallace and Hobbs 

Section 3.1.1 and 3.2



Water vapor 

Water vapor is roughly an ideal gas. It follows Dalton’s law of partial pressures (the 
total pressure is the sum of the pressure of all the constituent gases).

eαv = RvT

The mixing ratio is the amount of water vapor mass per unit of dry air

rv =
mv

md

The specific humidity is the amount of water vapor per unit of total air mass. 

qv =
mv

md + mv
qv ≃ rv
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Water vapor 
Using the ideal gas law we can express the mixing ratio and specific humidity in 
terms of pressure

e = ρvRvT

Which are written as

rv ≃ ε
e
p

p = ρRdT

ε = Rd /Rv = 0.622

qv ≃ ε
e

p + e
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Water vapor is lighter that the dry 
air molecules O2 and N2


8 Introduction and Overview

must be expressed in pascals (Pa). Substituting numer-
ical values we obtain

The mass of the atmosphere6 is

Matm ! 4" #
! 4" # (6.37 # 106)2 m2 # 1.004 # 104 kg m$2

! 5.10 # 1014 m2 # 1.004 # 104 kg m$2

! 5.10 # 1018 kg !

1.3.3 Chemical Composition

The atmosphere is composed of a mixture of gases
in the proportions shown in Table 1.1, where frac-
tional concentration by volume is the same as that
based on numbers of molecules, or partial pressures
exerted by the gases, as will be explained more
fully in Section 3.1. The fractional concentration by

mR2
E

m !
985 # 102 Pa!hPa

9.807
! 1.004 # 104 kg m$2

mass of a constituent is computed by weighting its
fractional concentration by volume by its molecular
weight, i.e.,

(1.7)

where mi is the mass, ni the number of molecules, and
Mi the molecular weight of the ith constituent, and
the summations are over all constituents.

Diatomic nitrogen (N2) and oxygen (O2) are the
dominant constituents of the Earth’s atmosphere,
and argon (Ar) is present in much higher concentra-
tions than the other noble gases (neon, helium, kryp-
ton, and xenon). Water vapor, which accounts for
roughly 0.25% of the mass of the atmosphere, is a
highly variable constituent, with concentrations rang-
ing from around 10 parts per million by volume
(ppmv) in the coldest regions of the Earth’s atmos-
phere up to as much as 5% by volume in hot, humid
air masses; a range of more than three orders of mag-
nitude. Because of the large variability of water
vapor concentrations in air, it is customary to list the
percentages of the various constituents in relation to
dry air. Ozone concentrations are also highly vari-
able. Exposure to ozone concentrations >0.1 ppmv is
considered hazardous to human health.

For reasons that will be explained in Section 4.4,
gas molecules with certain structures are highly effect-
ive at trapping outgoing radiation. The most import-
ant of these so-called greenhouse gases are water
vapor, carbon dioxide, and ozone. Trace constituents
CH4, N2O, CO, and chlorofluorocarbons (CFCs) are
also significant contributors to the greenhouse effect.

Among the atmosphere’s trace gaseous con-
stituents are molecules containing carbon, nitrogen,
and sulfur atoms that were formerly incorporated
into the cells of living organisms. These gases enter
the atmosphere through the burning of plant matter
and fossil fuels, emissions from plants, and the decay
of plants and animals. The chemical transformations
that remove these chemicals from the atmosphere
involve oxidation, with the hydroxyl (OH) radical
playing an important role. Some of the nitrogen and
sulfur compounds are converted into particles that
are eventually “scavenged” by raindrops, which con-
tribute to acid deposition at the Earth’s surface.

mi

"mi
!

niMi

"niMi

Table 1.1 Fractional concentrations by volume of the major
gaseous constituents of the Earth’s atmosphere up to an
altitude of 105 km, with respect to dry air

Fractional
Molecular concentration 

Constituenta weight by volume

Nitrogen (N2) 28.013 78.08%

Oxygen (O2) 32.000 20.95%

Argon (Ar) 39.95 0.93%

Water vapor (H2O) 18.02 0–5%

Carbon dioxide (CO2) 44.01 380 ppm

Neon (Ne) 20.18 18 ppm

Helium (He) 4.00 5 ppm

Methane (CH4) 16.04 1.75 ppm

Krypton (Kr) 83.80 1 ppm

Hydrogen (H2) 2.02 0.5 ppm

Nitrous oxide (N2O) 56.03 0.3 ppm

Ozone (O3) 48.00 0–0.1 ppm
a So called greenhouse gases are indicated by bold-faced type. For more detailed
information on minor constituents, see Table 5.1.

6 When the vertical and meridional variations in ! and the meridional variations in the radius of the Earth are accounted for, the mass
per unit area and the total mass of the atmosphere are #0.4% larger than the estimates derived here.

Modifications of the equations due to moisture

This means that a volume of 
humid air that is at the same 

temperature as a volume of dry air 
is actually less dense
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Virtual Temperature

10

The virtual temperature is the temperature dry air would have if it had the 
same density as the moist air at the same pressure.


pα = RdTv

Tv ≃ T (1 + 0.61qv)

To take into account this change in density we define the virtual temperature




Exercise

Mixing ratio (g/kg)


5 


10


30

Temperature (°C)


0


15


30

Location


Utqiaġvik (Barrow), AK


Gaylord, MI


Singapore 

Tv ≃ T (1 + 0.61qv)

Calculate the virtual temperature for the locations below. 


Based on your answer, do you think the virtual temperature correction may be 
important somewhere and why? 
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Dw
Dt

=
1
m

ΣiFz

D
Dt

=
d
dt

Newton’s second law dictates that 
acceleration must result from a 

net sum of forces. 


Apply this to vertical motion
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Ignoring the effects of planetary rotation 
and friction, the two main forces that cause 
vertical acceleration are gravity and the 
pressure gradient force.

Dw
Dt

= − α
∂p
∂z

− g

Acceleration Pressure 
gradient force

Gravity



Hydrostatic Balance

For quiescent atmospheric conditions, 
the atmosphere is maintained in place by 
a balance between the downward 
gravitational force and the upward 
pressure gradient force. 

ρg ≃ −
∂p
∂z

Using ideal gas law we can obtain profiles 
for how pressure changes with height

pα = RdTv



Example

For an isothermal atmosphere, can easily 
solve the differential equation to obtain

p ≃ p0 exp (−
gz

RdTv )

1.3 A Brief Survey of the Atmosphere 9

Although aerosols and cloud droplets account for
only a minute fraction of the mass of the atmos-
phere, they mediate the condensation of water vapor
in the atmospheric branch of the hydrologic cycle,
they participate in and serve as sites for important
chemical reactions, and they give rise to electrical
charge separation and a variety of atmospheric opti-
cal effects.

1.3.4 Vertical structure

To within a few percent, the density of air at sea level
is 1.25 kg m!3. Pressure p and density " decrease
nearly exponentially with height, i.e.,

(1.8)

where H, the e-folding depth, is referred to as the
scale height and p0 is the pressure at some reference
level, which is usually taken as sea level (z # 0). In
the lowest 100 km of the atmosphere, the scale height
ranges roughly from 7 to 8 km. Dividing Eq. (1.8) by
p0 and taking the natural logarithms yields

(1.9)

This relationship is useful for estimating the height of
various pressure levels in the Earth’s atmosphere.

Exercise 1.2 At approximately what height above
sea level does half the mass of the atmosphere lie
above and the other half lie below? [Hint: Assume
an exponential pressure dependence with H # 8 km
and neglect the small vertical variation of g with
height.]

Solution: Let be the pressure level that half
the mass of the atmosphere lies above and half lies
below. The pressure at the Earth’s surface is equal
to the weight (per unit area) of the overlying col-
umn of air. The same is true of the pressure at
any level in the atmosphere. Hence,
where is the global-mean sea-level pressure.
From Eq. (1.9)

Substituting H # 8 km, we obtain

zm # 8 km $ 0.693 !  5.5 km

zm # !H ln 0.5 # H ln 2

p0

pm # p0 /2

pm

zm

ln 
p
p0

" !
z
H

p " p0e!z#H

Because the pressure at a given height in the
atmosphere is a measure of the mass that lies above
that level, it is sometimes used as a vertical coordi-
nate in lieu of height. In terms of mass, the 500-hPa
level, situated at a height of around 5.5 km above
sea level, is roughly halfway up to the top the
atmosphere. !

Density decreases with height in the same manner
as pressure. These vertical variations in pressure and
density are much larger than the corresponding hori-
zontal and time variations. Hence it is useful to
define a standard atmosphere, which represents the
horizontally and temporally averaged structure of
the atmosphere as a function of height only, as shown
in Fig. 1.8. The nearly exponential height dependence
of pressure and density can be inferred from the fact
that the observed vertical profiles of pressure and
density on these semilog plots closely resemble
straight lines. The reader is invited to verify in
Exercise 1.14 at the end of this chapter that the cor-
responding 10-folding depth for pressure and density
is !17 km.

Exercise 1.3 Assuming an exponential pressure
and density dependence with H # 7.5 km, estimate
the heights in the atmosphere at which (a) the air
density is equal to 1 kg m!3 and (b) the height at
which the pressure is equal to 1 hPa.
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Fig. 1.8 Vertical profiles of pressure in units of hPa, density
in units of kg m!3, and mean free path (in meters) for the
U.S. Standard Atmosphere.

Wallace and Hobbs (2006)

Tv Mean virtual temperature of troposphere



Hypsometric equation

Which we can simplify by replacing the virtual temperature with its layer mean value to 
obtain 

70 Atmospheric Thermodynamics

Above the turbopause the vertical distribution of
gases is largely controlled by molecular diffusion and
a scale height may then be defined for each of the
individual gases in air. Because for each gas the scale
height is proportional to the gas constant for a unit
mass of the gas, which varies inversely as the molecu-
lar weight of the gas [see, for example (3.13)], the
pressures (and densities) of heavier gases fall off
more rapidly with height above the turbopause than
those of lighter gases.

Exercise 3.2 If the ratio of the number density of
oxygen atoms to the number density of hydrogen
atoms at a geopotential height of 200 km above the
Earth’s surface is 105, calculate the ratio of the num-
ber densities of these two constituents at a geopoten-
tial height of 1400 km. Assume an isothermal
atmosphere between 200 and 1400 km with a tem-
perature of 2000 K.

Solution: At these altitudes, the distribution of
the individual gases is determined by diffusion and
therefore by (3.26). Also, at constant temperature,
the ratio of the number densities of two gases is
equal to the ratio of their pressures. From (3.26)

From the definition of scale height (3.27) and analo-
gous expressions to (3.11) for oxygen and hydrogen
atoms and the fact that the atomic weights of oxygen
and hydrogen are 16 and 1, respectively, we have at
2000 K

and

 ! 1.695 " 106 m

Hhyd !
1000R*

1
  
2000
9.81

 m ! 8.3145  
2 " 106

9.81
 m

 ! 0.106 " 106 m

Hoxy !
1000R*

16
  
2000
9.81

 m !
8.3145

16
  
2 " 106

9.81
 m

 ! 105 exp !#1200 km " 1
Hoxy

#
1

Hhyd
#$

!
(p200 km)oxy exp[#1200 km%Hoxy (km)]
(p200 km)hyd exp[#1200 km%Hhyd (km)]

(p1400 km)oxy

(p1400 km)hyd

Therefore,

and

Hence, the ratio of the number densities of oxygen to
hydrogen atoms at a geopotential height of 1400 km
is 2.5. !

The temperature of the atmosphere generally
varies with height and the virtual temeprature
correction cannot always be neglected. In this more
general case (3.24) may be integrated if we define
a mean virtual temperature with respect to p as
shown in Fig. 3.2. That is,

(3.28)

Then, from (3.24) and (3.28),

(3.29)

Equation (3.29) is called the hypsometric equation.

Exercise 3.3 Calculate the geopotential height of
the 1000-hPa pressure surface when the pressure at
sea level is 1014 hPa. The scale height of the atmos-
phere may be taken as 8 km.

Z2 # Z1 ! H ln "p1

p2
# !

RdTv

!0
 ln "p1

p2
#

Tv #
&p1

p2

Tv d(ln p)

&p1

p2

d(ln p)
!
&p1

p2

Tv 
dp
p

ln "p1

p2
#

Tv

(p1400 km)oxy

(p1400 km)hyd
! 105 exp (#10.6) ! 2.5

 ! 8.84 " 10#3 km#1

1
Hoxy

#
1

Hhyd
 ! 8.84 " 10#6 m#1

Virtual temperature, Tv (K) 

From radiosonde
data

A B

C

E
D

Tv

ln p1

ln p2

ln
 p

Fig. 3.2 Vertical profile, or sounding, of virtual temperature.
If area ABC ! area CDE, is the mean virtual temperature
with respect to ln p between the pressure levels p1 and p2.

Tv

3.2 The Hydrostatic Equation 69

The geopotential !(z) at height z is thus given by

(3.21)

where the geopotential !(0) at sea level (z " 0) has, by
convention, been taken as zero. The geopotential at a
particular point in the atmosphere depends only on the
height of that point and not on the path through which
the unit mass is taken in reaching that point. The work
done in taking a mass of 1 kg from point A with geopo-
tential !A to point B with geopotential !B is !B # !A.

We can also define a quantity called the geopoten-
tial height Z as

(3.22)

where !0 is the globally averaged acceleration due to
gravity at the Earth’s surface (taken as 9.81 m s#2).
Geopotential height is used as the vertical coordinate
in most atmospheric applications in which energy
plays an important role (e.g., in large-scale atmos-
pheric motions). It can be seen from Table 3.1 that
the values of z and Z are almost the same in the
lower atmosphere where !0 ! !.

In meteorological practice it is not convenient to
deal with the density of a gas, $, the value of which is
generally not measured. By making use of (3.2) or
(3.15) to eliminate $ in (3.17), we obtain

Rearranging the last expression and using (3.20)
yields

(3.23)d! " ! dz " #RT
dp
p

" #RdTv
dp
p

%p
%z

" #
pg
RT

" #
pg

RdTv

Z " 
!(z)

!0
"  

1
!0
#z

0
!dz

!(z) " #z

0

!dz

If we now integrate between pressure levels p1 and
p2, with geopotentials !1 and !2, respectively,

or

Dividing both sides of the last equation by !0 and
reversing the limits of integration yields

(3.24)

This difference Z2 # Z1 is referred to as the (geopo-
tential) thickness of the layer between pressure levels
p1 and p2.

3.2.2 Scale Height and the Hypsometric
Equation

For an isothermal atmosphere (i.e., temperature
constant with height), if the virtual temperature
correction is neglected, (3.24) becomes

(3.25)

or

(3.26)

where

(3.27)

H is the scale height as discussed in Section 1.3.4.
Because the atmosphere is well mixed below the

turbopause (about 105 km), the pressures and den-
sities of the individual gases decrease with altitude
at the same rate and with a scale height propor-
tional to the gas constant R (and therefore
inversely proportional to the apparent molecular
weight of the mixture). If we take a value for Tv of
255 K (the approximate mean value for the tropo-
sphere and stratosphere), the scale height H for
air in the atmosphere is found from (3.27) to be
about 7.5 km.

H " RT
!0

" 29.3T

p2 " p1 exp$#
(Z2 # Z1)

H %

Z2 # Z1 " H ln(p1&p2)

Z2 # Z1 "
Rd

!0
 #p1

p2

Tv
dp

p

!
2

# !
1

" #Rd #p2

p1

Tv
dp

p

#!2

!1

d! " ##p2

p1

RdTv 
dp

p

Table 3.1 Values of geopotential height (Z) and acceleration
due to gravity (!) at 40° latitude for geometric height (z)

z (km) Z (km) ! (m s!2)

0 0 9.81

1 1.00 9.80

10 9.99 9.77

100 98.47 9.50

500 463.6 8.43

For smaller layers of the atmosphere, we can also solve the hydrostatic equation to 
obtain the “thickness” equation

Which is known as the hypsometric equation.



How about the ocean?

We can solve the hydrostatic equation to 
obtain the following:

p = p0 + ρ0gz

ρ = ρ0 [1 − βT (T − T0) + βs (S − S0) + βp (p − p0)]
is usually measured in conjunction with other
seawater properties such as temperature,
salinity, and current speeds. The properties are
often presented as a function of pressure rather
than depth.

Horizontal pressure gradients drive the hori-
zontal flows in the ocean. For large-scale
currents (of horizontal scale greater than a kilo-
meter), the horizontal flows are much stronger
than their associated vertical flows and are
usually geostrophic (Chapter 7). The horizontal
pressure differences that drive the ocean
currents are on the order of one decibar over
hundreds or thousands of kilometers. This is
much smaller than the vertical pressure
gradient, but the latter is balanced by the down-
ward force of gravity and does not drive a flow.
Horizontal variations in mass distribution
create the horizontal variation in pressure in
the ocean. The pressure is greater where the
water column above a given depth is heavier
either because it is higher density or because it
is thicker or both.

Pressure is usually measured with an elec-
tronic instrument called a transducer. The accu-
racy and precision of pressure measurements
is high enough that other properties such as
temperature, salinity, current speeds, and so
forth can be displayed as a function of pressure.
However, the accuracy, about 3 dbar at depth, is
not sufficient to measure the horizontal pressure
gradients. Therefore other methods, such as the
geostrophic method, or direct velocity measure-
ments, must be used to determine the actual
flow. Prior to the 1960s and 1970s, pressure
was measured using a pair of mercury ther-
mometers, one of which was in a vacuum
(“protected” by a glass case) and not affected
by pressure while the other was exposed to the
water (“unprotected”) and affected by pressure,
as described in the following section. More
information about these instruments and
methods is provided in Section S6.3 of the
supplementary materials on the textbook Web
site.

TABLE 3.1 Comparison of Pressure (dbar) and Depth
(m) at Standard Oceanographic Depths
Using the UNESCO (1983) Algorithms

Pressure (dbar) Depth (m) Difference (%)

0 0 0

100 99 1

200 198 1

300 297 1

500 495 1

1000 990 1

1500 1453 1.1

2000 1975 1.3

3000 2956 1.5

4000 3932 1.7

5000 4904 1.9

6000 5872 2.1

Percent difference ¼ (pressure " depth)/pressure # 100%.
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FIGURE 3.2 The relation between depth and pressure,
using a station in the northwest Pacific at 41$ 53’N, 146$

18’W.

PRESSURE 31

To a good approximation we can treat 
seawater as incompresible

ρ ≃ ρ0


