

Announcements

Homework 1 is now online. It is due two weeks from today.

Last Class: the equation of state

For dry air

$$
\begin{gathered}
p_{d}=\rho_{d} R_{d} T \quad R_{d}=287 \mathbf{J} \mathbf{~ k g}^{-1} \mathbf{K}^{-1} \\
\text { Dry gas constant }
\end{gathered}
$$

Partial pressure for water vapor

$$
e=\rho_{v} R_{v} T \quad R_{v}=461 \mathbf{J} \mathbf{k g}^{-1} \mathbf{K}^{-1}
$$

Water vapor constant

Partial pressure for moist air

$$
p=p_{d}+e \quad p=\left(\rho_{d} R_{d}+\rho_{v} R_{v}\right) T
$$

Fo
 Equation of state for seawater

ex
-
.

1

$$
\begin{aligned}
& \rho=\rho_{0}\left[1-\beta_{T}\left(T-T_{0}\right)+\beta_{s}\left(S-S_{0}\right)+\beta_{p}\left(p-p_{0}\right)\right] \\
& \text { This is just an approximation. } \\
& \text { The equation that is used in } \\
& \text { ocean modeling is much more } \\
& \text { complicated! } \\
& 86 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\
& \text { - } 0 \text { - } \\
& \text { }
\end{aligned}
$$

Today

Examine how water vapor modifies the equation of state

Introduce the hydrostatic equation

Supplementary reading

Petty
Sections 3.4 and Chapter 4
Wallace and Hobbs
Section 3.1.1 and 3.2

Water vapor

Water vapor is roughly an ideal gas. It follows Dalton's law of partial pressures (the total pressure is the sum of the pressure of all the constituent gases).

$$
e \alpha_{v}=R_{v} T
$$

The mixing ratio is the amount of water vapor mass per unit of dry air

$$
r_{v}=\frac{m_{v}}{m_{d}}
$$

The specific humidity is the amount of water vapor per unit of total air mass.

$$
q_{v}=\frac{m_{v}}{m_{d}+m_{v}} \quad q_{v} \simeq r_{v}
$$

Water vapor

Using the ideal gas law we can express the mixing ratio and specific humidity in terms of pressure

$$
e=\rho_{v} R_{v} T \quad p=\rho R_{d} T
$$

Which are written as

$$
\begin{aligned}
r_{v} & \simeq \varepsilon \frac{e}{p} \quad q_{v} \simeq \varepsilon \frac{e}{p+e} \\
\varepsilon & =R_{d} / R_{v}=0.622
\end{aligned}
$$

Modifications of the equations due to moisture

Water vapor is lighter that the dry air molecules O_{2} and N_{2}

This means that a volume of humid air that is at the same temperature as a volume of dry air is actually less dense

Constituent ${ }^{\text {a }}$	Molecular weight	Fractional concentration by volume
Nitrogen (N_{2})	28.013	78.08\%
Oxygen (O_{2})	32.000	20.95\%
Argon (Ar)	39.95	0.93\%
Water vapor ($\mathrm{H}_{2} \mathrm{O}$)	18.02	0-5\%
Carbon dioxide (CO_{2})	44.01	380 ppm
Neon (Ne)	20.18	18 ppm
Helium (He)	4.00	5 ppm
Methane (CH_{4})	16.04	1.75 ppm
Krypton (Kr)	83.80	1 ppm
Hydrogen (H_{2})	2.02	0.5 ppm
Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$)	56.03	0.3 ppm
Ozone (O_{3})	48.00	0-0.1 ppm

To take into account this change in density we define the virtual temperature

$$
\begin{gathered}
p \alpha=R_{d} T_{v} \\
T_{v} \simeq T\left(1+0.61 q_{v}\right)
\end{gathered}
$$

The virtual temperature is the temperature dry air would have if it had the same density as the moist air at the same pressure.

Virtual Temperature

Exercise

Calculate the virtual temperature for the locations below.
Based on your answer, do you think the virtual temperature correction may be important somewhere and why?

$$
T_{v} \simeq T\left(1+0.61 q_{v}\right)
$$

Location
Utqiaġvik (Barrow), AK
Gaylord, MI
Singapore
30
30

Newton's second law dictates that acceleration must result from a net sum of forces.

Apply this to vertical motion

$$
\frac{D w}{D t}=\frac{1}{m} \Sigma_{i} F_{z}
$$

$$
\frac{D}{D t}=\frac{d}{d t}
$$

Ignoring the effects of planetary rotation and friction, the two main forces that cause vertical acceleration are gravity and the pressure gradient force.

Acceleration $\begin{array}{cc}\text { Pressure } \\ \text { gradient force }\end{array}$

Hydrostatic Balance

For quiescent atmospheric conditions, the atmosphere is maintained in place by a balance between the downward gravitational force and the upward pressure gradient force.

$$
\rho g \simeq-\frac{\partial p}{\partial z}
$$

Using ideal gas law we can obtain profiles for how pressure changes with height

$$
p \alpha=R_{d} T_{v}
$$

Hydrostatic Equilibrium

Example

For an isothermal atmosphere, can easily solve the differential equation to obtain

$$
p \simeq p_{0} \exp \left(-\frac{g z}{R_{d} \bar{T}_{v}}\right)
$$

\bar{T}_{v} Mean virtual temperature of troposphere

Hypsometric equation

For smaller layers of the atmosphere, we can also solve the hydrostatic equation to obtain the "thickness" equation

$$
Z_{2}-Z_{1}=\frac{R_{d}}{g_{0}} \int_{p_{2}}^{p_{1}} T_{v} \frac{d p}{p}
$$

Which we can simplify by replacing the virtual temperature with its layer mean value to obtain

$$
Z_{2}-Z_{1}=\bar{H} \ln \left(\frac{p_{1}}{p_{2}}\right)=\frac{R_{d} \bar{T}_{v}}{g_{0}} \ln \left(\frac{p_{1}}{p_{2}}\right)
$$

Which is known as the hypsometric equation.

How about the ocean?

$$
\rho=\rho_{0}\left[1-\beta_{T}\left(T-T_{0}\right)+\beta_{s}\left(S-S_{0}\right)+\beta_{p}\left(p-p_{0}\right)\right]
$$

To a good approximation we can treat seawater as incompresible

$$
\rho \simeq \rho_{0}
$$

We can solve the hydrostatic equation to obtain the following:

$$
p=p_{0}+\rho_{0} g z
$$

